НЕКОТОРЫЕ АСПЕКТЫ КАРДИОРЕНАЛЬНОГО СИНДРОМА

НЕКОТОРЫЕ АСПЕКТЫ КАРДИОРЕНАЛЬНОГО СИНДРОМА

Авторы

  • Гузал Муллабаева д.м.н., Республиканский научно-практический медицинский центр Кардиологии
  • Шохиста Мухамедова кардиолог, Республиканский научно-практический медицинский центр Кардиологии Ташкент, Узбекистан

Ключевые слова:

Кардиоренальный синдром, сердечная недостаточность, скорость клубочковой фильтрации, воспаление.

Аннотация

Кардиоренальный синдром (КРС) который был описан впервые Робертом Брайтом в 1836г. как взаимосвязанное состояние между сердцем и почками до сих пор не изучен полностью. Хотя в течение последних десятилетий были опубликованы несколько научных работ, продемонстрировавших некоторые механизмы подразумевающие сердечнопочечной взаимосвязи, такие как, ренин-ангиотензин-альдостероновая система, активация симпатической нервной системы и окислительного стресса и воспаление, данный обзор был направлен на углубленное описание этих механизмов с включением нескольких новых факторов КРС.

Библиографические ссылки

Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol 2008;52:1527–39. https://doi.org/10.1016/j.jacc.2008.07.051

Ronco C, McCullough P, Anker SD et al. Cardio-renal syndromes: report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur Heart J 2010;31:703-11. https://doi.org/10.1093/eurheartj/ehp507

Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni

S, Vescovo G, Zamperetti N, Ponikowski P. Cardio-renal syndromes: report from the Consensus Conference of the Acute Dialysis Quality Initiative.Eur Heart J. 2010; 31:703– 711.CrossrefMedlineGoogle Scholar

Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndromeJ Am Coll Cardiol. 2008; 52:1527–1539. doi: 10.1016/j.jacc.2008.07.051 CrossrefMedlineGoogle Scholar

Резник Е.В. Почки как орган-мишень при хронической сердечной недостаточности. Lamber. 2011, 188c. Reznik E.V. Kidneys as a target organ for chronic heart failure. Lamber. 2011, 188p.

Резник Е.В., Гендлин Г.Е., Гущина В.М. Хроническая болезнь почек у больных с хронической сердечной недостаточностью (Обзор литературы). Нефрология и диализ. 2010; 12(1): 13-24. Reznik E.V., Gendlin G.E., Guschina V.M. Chronic kidney disease in patients with chronic heart failure (Literature review). Nephrology and dialysis. 2010; 12(1): 13-24 [In Russian].

https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html

Искендеров Б.Г. «Кардиоренальный синдром у кардиологических больных» Монография (2014г). УДК 616.132.2–89:86-06 ББК 54.1.

Арутюнов, Г.П. Патофизиологические процессы в почках у больных ХСН. Журнал сердечная недостаточность. 2008; 9(5): 234-249. Arutyunov G.P. Pathophysiological processes in the kidneys in patients with CHF. Journal of heart failure. 2008; 9(5): 234-249

[In Russian].

Резник Е.В., Гендлин Г.Е., Сторожаков Г.И. Дисфункция почек у больных с хронической сердечной недостаточностью: патог енез, диагност ика и лечение. Журнал Сердечная недостаточность. 2005; 6(6): 45-50. Reznik E.V., Gendlin G.E., Storozhakov G.I. Renal dysfunction in patients with chronic heart failure: pathogenesis, diagnosis and treatment. Journal of Heart Failure. 2005; 6(6): 45-50 [In Russian].

Сторожаков Г.И., Гендлин Г.Е., Резник Е.В. Основные направления в лечении больных с хронической сердечной недостаточностью: руководство для врачей терапевтов,211 врачей общей практики. Москва: Миклош. 2008; 137-149. Storozhakov G.I., Gendlin G.E., Reznik E.V. The main directions in the treatment of patients with chronic heart failure:a guide

for general practitioners, general practitioners. Moscow: Miklos. 2008; 137-149 [InRus sian]

Терещенко С.Н. Современные аспекты кардиоренального синдрома. Журнал Сердечная недостаточность. 2008; 9(5): 226- 230. Tereshchenko S.N. Modern aspects ofcardiorenal syndrome. Journal of Heart Failure. 2008; 9(5): 226-230 [In Russian].

Терещенко С.Н., Демидова И.В., Почечная функция при хронической сердечной недостаточности у больных пожилого и старческого возраста. Сердце. 2002; 1(5):

-256. Tereshchenko S.N., Demidova I.V. Renal Function in Chronic Heart Failure in Patients of Elderly and Elderly Age. Heart. 2002; 1(5): 251- 256 [In Russian]

Bongartz L.G., Braam B., Gaillard C.A. et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012; 303 (9): F1253-63.

Cruz D.N., Schmidt-Ott K.M., Vescovo G. et al. Pathophysi ology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013; 182: 117- 36.

Delles C., Schmieder R.E. The kidney in congestive heart failure: renal adverse event rate of treatment. J Cardiovasc Pharmacol. 2001; 38 (1): 99-107.

Silverberg D.S., Wexler D., Blum M. et al. The interaction between heart failure, renal failure and anemia — the cardio-renal anemia syndrome. Blood Purif. 2004; 22 (3): 277- 84.

Carolina Victoria Cruz Junho et al. Heart Failure Reviews https://doi.org/10.1007/s10741- 022-10218-w

Carneiro-Ramos MS, Diniz GP, Nadu AP et al (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105:325–335. https://doi.org/10.1007/s00395-010-0089-0

Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK- 3β/mTOR signaling pathway. Basic Res Cardiol 104:653–667. https://doi. org/10.1007/s00395-009-0043-1

Vignier N, Le Corvoisier P, Blard C et al (2014) AT1 blockade abolishes left ventricular hypertrophy in heterozygous cMyBP-C null mice: role of FHL1. Fundam Clin Pharmacol 28:249–256. https://doi.org/10.1111/fcp.12031

Hillege H.L., Fidler V., Diercks G.F. et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002; 106 (14): 1777- 82.

Hillege H.L., Girbes A.R., de Kam P.J. et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000; 102 (2): 203-10.

Hillege H.L., Janssen W.M., Bak A.A. et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001; 249 (6): 519-26.

Makaritsis K.P., Liakopoulos V., Leivaditis K. et al. Adaptation of renal function in heart failure. Ren Fail. 2006; 28 (7): 527-35.

Schrier R.W., Abraham W.T. Hormones and hemodynamics in heart failure. N Engl J Med.

; 341 (8): 577-85.

Mohammadi M, Najaf H, Mohamadi Yarijani Z et al (2020) Protective efect of piperine in ischemia-reperfusion induced acute kidney injury through inhibition of infammation and oxidative stress. J Tradit Complement Med 10:570–576. https://doi.org/10. 1016/j.jtcme.2019.07.002212

Casas A, Mallén A, Blasco-Lucas A et al (2020) Chronic kidney disease-associated infammation increases the risks of acute kidney injury and mortality after cardiac surgery. Int J Mol Sci 21:9689. https://doi.org/10.3390/ijms21249689

Remuzzi G., Cattaneo D., Perico N. The aggravating mechanisms of aldosterone on kidney fibrosis. J Am Soc Nephrol. 2008; 19 (8): 1459-62.

Park J (2012) Cardiovascular risk in chronic kidney disease: role of the sympathetic nervous system. Cardiol Res Pract 2012:1–8. https://doi.org/10.1155/2012/319432

Ramchandra R, Xing DT, Matear M et al (2019) Neurohumoral interactions contributing to renal vasoconstriction and decreased Heart Failure Reviews 1 3 renal blood fow in heart failure. Am J Physiol Integr Comp Physiol 317:R386–R396.

https://doi.org/10.1152/ajpregu.00026.2019

Gueguen C, Jackson KL, Marques FZ et al (2019) Renal nerves contribute to hypertension in Schlager BPH/2J mice. Hypertens Res 42:306–318. https://doi.org/10.1038/s41440-018- 0147-9

Vieira-Rocha MS, Rodríguez-Rodríguez P, Sousa JB et al (2019) Vascular angiotensin AT1 receptor neuromodulation in fetal programming of hypertension. Vascul Pharmacol 117:27–

https:// doi.org/10.1016/j.vph.2018.10.003

Alarcon MML, Trentin-Sonoda M, Panico K et al (2019) Cardiac arrhythmias after renal I/R depend on IL-1β. J Mol Cell Cardiol 131:101–111. https://doi.org/10.1016/j.yjmcc.2019.04.025

Hatamizadeh P., Fonarow G.C., Budoff M.J. et al. Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat Rev Nephrol. 2013; 9 (2): 99-111.

Heymes C., Bendall J.K., Ratajczak P. et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003; 41 (12): 2164-71.

Jo E-K, Kim JK,Shin D-M, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 infammasome activation. Cell Mol Immunol 13:148–159. https://doi.org/10.1038/cmi.2015.95

Ayoub KF, Pothineni NVK, Rutland J et al (2017) Immunity, infammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther 31:593–608. https:// doi.org/10.1007/s10557-017-6752-z

Raina R, Nair N, Chakraborty R et al (2020) An update on the pathophysiology and treatment of cardiorenal syndrome. Cardiol Res 11:76–88. https://doi.org/10.14740/cr955

Pruchniak MP, Araźna M, Demkc U (2016) Biochemistry of oxidative stress. Advances in experimental medicine and biology. Springer, New York LLC, pp 9–19

Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants andvascular infammation in cardiovascular disease (a review). Vascul Pharmacol 71:40–56

Comnick M., Ishani A. Renal biomarkers of kidney injury in cardiorenal syndrome. Curr Heart Fail Rep. 2011; 8 (2): 99-105

Amraei R, Rahimi N (2020) COVID-19, renin-angiotensin system and endothelial dysfunction. Cells 9:1652. https://doi.org/ 10.3390/cells9071652

Alarcon MML, Trentin-Sonoda M, Panico K et al (2019) Cardiac arrhythmias after renal I/R depend on IL-1β. J Mol Cell Cardiol 131:101–111. https://doi.org/10.1016/j.yjmcc.2019.04.025

Entin-Me er M., Ben-Shoshan J., Maysel-Auslender S. et al. Accelerated renal fibrosis in cardiorenal syndrome is associated with long-term increase in urine neutrophil gelatinaseassociated lipocalin levels. Am J Nephrol. 2012; 36 (2): 190-200.

Ezekowitz J., McAlister F.A., Humphries K.H. et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J Am Coll Cardiol. 2004; 44 (8): 1 587-92.

Choi EK, Jung H, Kwak KH et al (2017) Inhibition of oxidative stress in renal ischemiareperfusion injury. Anesth Analg 124:204–213.

https://doi.org/10.1213/ANE.0000000000001565213

Liu Y, Lei S, Gao X et al (2012) PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfuntion in rats with streptozotocin- induced diabetes. Clin Sci 122:161–173. https://doi.org/10.1042/CS20110176

Cruz D.N., Gaiao S., Maisel A. et al. Neutrophil gelatinase-associated lipocalin a s a biomarker of cardiovascular disease: a systematic review. Clin Chem Lab Med. 2012; 50 (9): 1533-45.

Entin-Me er M., Ben-Shoshan J., Maysel-Auslender S. et al. Accelerated renal fibrosis in cardiorenal syndrome is associated with long-term increase in urine neutrophil gelatinaseassociated lipocalin levels. Am J Nephrol. 2012; 36 (2): 190-200.

Lekawanvijit S., Kompa A.R., Zhang Y. et al. Myocardial infarction impairs renal function, induces renal interstitial fibrosis, and increases renal KIM-1 expression: implications for cardiorenal syndrome. Am J Physiol Heart Circ Physiol. 2012; 302 (9): H1884-93.

Lu J., Wang X., Wang W. et al. Abrogation of lectin-like oxidized LDL receptor-1 attenuates acute myocardial ischemia-induced renal dysfunction by modulating systemic and local inflammation. Kidney Int. 2012; 82 (4): 436-44.

Boaz M, Smetana S, Weinstein T et al (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebo-controlled trial. Lancet 356:1213–1218. https://doi.org/10.1016/S0140- 6736(00)02783-5

Lekawanvijit S, Krum H (2015) Cardiorenal syndrome: role of protein-bound uremic toxins. J Ren Nutr 25:149–154. https://doi. org/10.1053/j.jrn.2014.10.009

Tamariz L, Hernandez F, Bush A et al (2014) Association between serum uric acid and atrial fbrillation: a systematic review and meta-analysis. Hear Rhythm 11:1102–1108. https:// doi.org/10.1016/j.hrthm.2014.04.003

Chaudhary K, Malhotra K, Sowers J, Aroor A (2013) Uric acidkey ingredient in the recipe for cardiorenal metabolic syndrome. CardioRenal Med 3:208–220. https://doi.org/10.1159/000355405

Vieira-Rocha MS, Rodríguez-Rodríguez P, Sousa JB et al (2019) Vascular angiotensin AT1 receptor neuromodulation in fetal programming of hypertension. Vascul Pharmacol 117:27– 34. https:// doi.org/10.1016/j.vph.2018.10.003

Dhingra R, Gona P, Benjamin EJ et al (2010) Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail 12:812–818. https://doi.org/10.1093/eurjhf/hfq106

Cancela AL, Santos RD, Titan SM et al (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS ONE 7:e36883. https://doi.org/10. 1371/journal.pone.0036883

Brunet P, Gondouin B, Duval-Sabatier A et al (2011) Does uremia cause vascular dysfunction? Kidney Blood Press Res 34:284–290. https://doi.org/10.1159/000327131

Liu J., Sukhova G. K., Sun J. S., Xu W. H. et al. Lysosomal cysteine proteases in atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. N 8. P. 1359–1366

Lutgens S. P., Cleutjens K. B., Daemen M. J., Heeneman S. Cathepsin cysteine proteases in cardiovascular disease // FASEB J. 2007. Vol. 21. N 12. P. 3029–3041

Lassus J. P., Harjola V. P., Peuhkurinen K., Sund R. et al. Cystatin C, NT-proBNP, and inflammatory markers in acute heart failure: insights into the cardiorenal syndrome // Biomarkers. 2011. Vol. 16. N 4. P. 302–310.

Muslimovic A., Tulumovic D., Hasanspahic S., Hamzic-Mehmedbasic A. et al. Serum cystatin C — marker of inflammation and cardiovascular morbidity in Chronic Kidney Disease Stages 1–4 // Mater Sociomed. 2015. Vol. 27. N 2. P. 75–78.

Gu F. F., Lü S. Z., Chen Y. D., Zhou Y. J. et al. Relationship between plasma cathepsin Sand cystatin C levels and coronary plaque morphology of mild to moderate lesions: an in vivo study using intravascular ultrasound // Chin. Med. J. (Engl.). 2009. Vol. 122. N 23. P. 2820– 2826214

Croda-Todd M. T., Soto-Montano X. J., Hernández-Cancino P. A., Juárez-Aguilar E. Adult cystatin C reference intervals determined by nephelometric immunoassay // Clin. Biochem. 2007. Vol. 40. N 13–14. P. 1084–1087.

The ESC Textbook of Intensive and Acute Cardiovascular Care (2 ed.) Edited by Marco Tubaro, Pascal Vranckx, Susanna Price, and Christiaan Vrints. DOI: 10.1093/med/ 9780199687039.001.0001

Загрузки

Опубликован

2023-01-07

Выпуск

Раздел

Articles
Loading...